| Chetverikov SP, Loginov ON. A New Ensifer adhaerens Strain M1 is capable of transformation of perfluorocarboxylic acids. Microbiology 2019;88:115–117. https://doi.org/10.1134/S0026261718060085. |
| Choi YJ, Helbling DE, Liu J, Olivares CI, Higgins CP. Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. Science of the Total Environment. 2022;824:153711. https://doi.org/10.1016/j.scitotenv.2022.153711. |
| Colosi LM, Pinto RA, Huang Q, Weber WJ. Peroxidase‐mediated degradation of perfluorooctanoic acid. Environmental Toxicology and Chemistry. 2009;28:264–271. https://doi.org/10.1897/08-282.1. |
| Huang S, Jaffé PR. Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Acidimicrobium sp. Strain A6. Environmental Science and Technology. 2019;53:11410 —11419. https://doi.org/10.1021/acs.est.9b04047. |
| LaFond JA, Hatzinger PB, Guelfo JL, Millerick K, Jackson WA. Bacterial transformation of per-and poly-fluoroalkyl substances: a review for the field of bioremediation. Environmental Science: Advances. 2023;2:1019-41. https://doi.org/10.1039/D3VA00031A. |
| LaFond JA, Rezes R, Shojaei M, Anderson T, Jackson WA, Guelfo JL, Hatzinger PB. Biotransformation of PFAA Precursors by Oxygenase-Expressing Bacteria in AFFF-Impacted Groundwater and in Pure-Compound Studies with 6:2 FTS and EtFOSE. Environmental Science and Technology. 2024;58:13820–13832. https://doi.org/10.1021/acs.est.4c01931. |
| Marciesky M, Aga DS, Bradley IM, Aich N, Ng C. Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS). Journal of Chemical Information and Modeling. 2023;63:7299-7319. https://doi.org/10.1021/acs.jcim.3c01303. |
| Merino N, Wang M, Ambrocio R, Mak K, O’Connor E, Gao A, Hawley EL, Deeb RA, Tseng LY, Mahendra S. Fungal biotransformation of 6:2 fluorotelomer alcohol. Remediation 2018;28:59–70. https://doi.org/10.1002/rem.21550. |
| Merino N, Wang N, Gao Y, Wang M, Mahendra S. Roles of various enzymes in the biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by a white-rot fungus. Journal of Hazardous Materials. 2023;450;131007. https://doi.org/10.1016/j.jhazmat.2023.131007. |
| Newell CJ, Javed H, Li Y, Johnson NW, Richardson SD, Connor JA, Adamson DT. PFAS Enhanced attenuation (EA) to manage PFAS plumes in groundwater. Remediation. 2022;32,239-257. https://doi.org/10.1002/rem.21731. |
| Shah K, Pandey V, Bose H, Hao Y, Choudhuri RG, Connolly A, Wyner H, Deyett E, Sorenson K, Wohlschlegel JA, Mahendra S. Fungal proteomic response to PFAS mixtures: Defense or offense? Journal of Hazardous Materials Letters. 2025;6. https://doi.org/10.1016/j.hazl.2025.100159. |
| Sima MW, Huang S, Jaffé PR. Modeling the kinetics of perfluorooctanoic and perfluorooctane sulfonic acid biodegradation by Acidimicrobium sp. Strain A6 during the feammox process. Journal of Hazardous Materials. 2023;448:130903. https://doi.org/10.1016/j.jhazmat.2023.130903 |
| Tseng N, Wang N, Szostek B, Mahendra S. Biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by a wood-rotting fungus. Environmental Science and Technology. 2014:48:4012–4020. https://doi.org/10.1021/es4057483. |
| USEPA. National Primary Drinking Water Regulations: PFAS; Final Rule. Federal Register, Washington, DC. 2024:32532–32757. |
| Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microbial Biotechnology. 2021;15:773-792. https://doi.org/10.1111/1751-7915.13928. |
| Yu Y, Che S, Ren C, Jin B, Tian Z, Liu J, Men Y. Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity Study. Environmental Science and Technology. 2022;56:4894-4904. https://doi.org/10.1021/acs.est.1c05509. |
| Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. Bioresource Technology. 2022;344:126223. https://doi.org/10.1016/j.biortech.2021.126223. |